Package: baycn 1.2.0

baycn: Bayesian Inference for Causal Networks

A Bayesian hybrid approach for inferring Directed Acyclic Graphs (DAGs) for continuous, discrete, and mixed data. The algorithm can use the graph inferred by another more efficient graph inference method as input; the input graph may contain false edges or undirected edges but can help reduce the search space to a more manageable size. A Bayesian Markov chain Monte Carlo algorithm is then used to infer the probability of direction and absence for the edges in the network. References: Martin and Fu (2019) <arxiv:1909.10678>.

Authors:Evan A Martin [aut, cre], Audrey Qiuyan Fu [aut]

baycn_1.2.0.tar.gz
baycn_1.2.0.zip(r-4.5)baycn_1.2.0.zip(r-4.4)baycn_1.2.0.zip(r-4.3)
baycn_1.2.0.tgz(r-4.4-any)baycn_1.2.0.tgz(r-4.3-any)
baycn_1.2.0.tar.gz(r-4.5-noble)baycn_1.2.0.tar.gz(r-4.4-noble)
baycn_1.2.0.tgz(r-4.4-emscripten)baycn_1.2.0.tgz(r-4.3-emscripten)
baycn.pdf |baycn.html
baycn/json (API)

# Install 'baycn' in R:
install.packages('baycn', repos = c('https://evanamartin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/evanamartin/baycn/issues

Datasets:
  • drosophila - Tissue type and transcription factor binding data during Drosophila mesoderm development
  • geuvadis - Genotype and gene expression data from the GEUVADIS project

On CRAN:

directed-acyclic-graphgene-regulatory-network

3.18 score 3 stars 1 scripts 583 downloads 8 exports 33 dependencies

Last updated 4 years agofrom:11331e8732. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:mhEdgemseplotprerecshowsimdatasummarytracePlot

Dependencies:clicolorspacecpp11eggfansifarverggplot2gluegridExtragtablegtoolsigraphisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr